use of metals, and the evolution of political and social institutions in a number of places. The agricultural revolution probably occurred before 8000 B.C., and by 1000 B.C. it had spread to many parts of the continent. Some areas have been identified as centers of early agriculture: the Ethiopian Plateau, the West African savanna, the West African forest, and the forest-savanna zone in west central Africa. From these places, the knowledge of agriculture spread to a wider area.

Skipping the Bronze Age, Africa entered the Iron Age around 500 B.C., probably beginning in Nubia, but with other centers in the Lake Victoria region and Nok in central Nigeria. With iron implements, states were able to expand in size, political authorities consolidated their power, and the making of weapons and tools improved remarkably. Migrations and population displacement were probably common in African history, as in the case of the Bantu.

Chapter 3

Early History: Traditions of Origins and Archaeological Interpretations

Julius O. Adekunle

Introduction

The role of archaeology cannot be overlooked in the prehistory of Africa. The recovery and interpretation of artifacts produce vital information on the early history and culture of the peoples of Africa. When Charles Darwin in his Descent of Man (1871) suggested that Africa was the cradle of mankind, subsequent scientific researches and archaeological discoveries proved him right. Paleoanthropologists, archaeologists, and anthropologists then began to carry out researches into the origins of human beings. Excavations have been carried out in Africa with new finds producing new information and new interpretations. The discovery of fossilized bones places Africa as the cradle of modern humankind. Although human fossils are rare because it takes a long time and certain conditions for humans to form into fossilized bones, nevertheless, some have been found in Kenya, Tanzania, Ethiopia, and South Africa. Thus, Louis Leakey asserts that the first contribution of Africa to human progress is "the evolution of man himself."1

The history and culture of the peoples of Africa, however, shows that their interpretation of the origins of humans is different and non-scientific. Their cultural beliefs and practices as well as their interpretation of human origins are entrenched in religion. Accordingly, they explain human origins in terms of creation stories. In their traditions, they refer to the creator of all living things. For one thing, traditions are cultural and not empirical. Therefore, they do not provide universally acceptable explanations to the origins of humans. For another, tradi-

1. The author acknowledges the Grants-in-Aid-of-Creativity Committee of Monmouth University, West Long Branch, New Jersey, for providing the funding for this research. This paper has benefited from the contributions of Drs. Glenn King and Richard Veit both of the Department of History and Anthropology, Monmouth University.

Archaeological Discoveries and Interpretations

Paleoanthropologists believe that the earliest humans (hominids) had close relationship with the great apes, the chimpanzee, and gorilla (pongids) most of which were found in central Africa. Charles Darwin pointed out that "it is probable that Africa was formerly inhabited by extinct apes closely allied to the gorilla and chimpanzee." The split between hominids and pongids took place during the late Miocene (about 10-5 million years ago). Clifford Jolly states that "from rocks of this age [Miocene] have been found the earliest fossils representing the primates of sub-Saharan Africa, the home of many living monkeys and apes and the probable place of the origin of the human family." In search of the "missing link," archaeologists have excavated many sites in East and South Africa with amazing results. Fossils have been found, analyzed, and dated thereby enlightening the understanding of the history and culture of the early peoples of Africa.

The search for the origins of humans is carried out through the study and interpretation of fossils. In the 1850s, scientists found only two fossils; one was that of an ape and the other was a near-human bone called the Neanderthal man. The Neanderthal man was classified as later archaic Homo sapiens with the striking features of a large brain, stone tools and weapons, hunting, artwork, and burying of the dead. Eugene Dubois (1858-1940) in 1891 found the first remains of Homo erectus from the fossiliferous gravels in Java, Asia. Dubois believed that his discovery provided the "missing link" between humans and apes.

In 1924 some fossilized bones of australopithecines were discovered, studied, and interpreted by Raymond Dart, a paleontologist and professor of anatomy at the University of the Witwatersrand in Johannesburg, South Africa. A skull, which represented early humankind, was discovered at Taung. The skull was different from either the Neanderthal or H. erectus. Dart named it Australopithecus africanus ("The South African Ape" or "Southern Ape from Africa"). Australopithecus africanus with a larger brain than that of a modern ape was dated about 2-3 million years ago. Australopithecines have been found also in Tanzania, Kenya, and southern Ethiopia. Later discoveries show that Australopithecus afarensis fossils found at Hadar in Ethiopia lived between 3 and 4 million years ago. A later species of the genus Anthropithecus was A. aethiopicus. In the 1930s, Robert Broom found adult samples of A. robustus. Both A. robustus and A. africanaus belonged to the hominin family.

Excavations and Results After the Second World War

Archaeological excavations increased after the Second World War and new hominid remains were unearthed. The Olduvai Gorge in northern Tanzania was the center of excavations for Louis and Mary Leakey. They uncovered a series of fossils of Pleistocene Age and discovered a new form of robust Australopithecus in 1959. Because the Leakeys believed that the fossil was different from the australopithecines, they termed it a new genus and therefore named it *Zinjanthropus boisei* ("East African Man"), after Charles Boisne who funded the excavations. Z. boisei had larger molars and heavier skull than either *A. robustus* or *A. aethopicus*. Although Louis Leakey reported that he had discovered *Homo habilis*, paleoanthropologists consider it to be a new species of the genus *Australopithecus*. In the 1960s the Leakeys made another discovery in the Olduvai Gorge. The new find was closer to humankind than *A. boisei*. It was bipedal, had a brain that was getting larger, dental proportions that were humanlike, and legs that were longer. Bipedalism was considered to be one of the hallmarks of human beings. Because of these distinct features, the new find was classified in the genus *Homo* and the species *habilis*. Found about 1-2 million years ago, *H. habilis* had a brain size of about 600 to 750 cubic centimeters. *H. habilis* made tools such as choppers, scrapers, and hammer stones. Of all the finds, *H. habilis* had the most pronounced features. That is why it has been described as the true human ancestor.

Bernard Campbell and Joseph Vogel point out that *A. boisei* coexisted with *H. habilis* and with *H. erectus* that was found by Richard Leakey at Kookri Fera, Kenya in 1971. R. C. Clark, Yves Coppens, and Camille Arambourg, in different excavations, have also found earliest hominids in Omo Valley and East Turkana.

An international group led by Donald Johanson made a scientifically informative discovery at the Afar Triangle in Ethiopia in 1974. The fossil was identified as *A. afarensis* and nicknamed "Lucy." Dated between 3-4 million years ago, Lucy was bipedal with the morphology of its bones functionally identical to that of more recent humans. Aside from Lucy, Johanson found a group of hominid bones, which has been called the "first family." The genus *Homo* split into another species called *erectus* about 1.9 million years ago. *H. erectus* had a large body, a thick skull, and prominent jaws. It had a brain capacity of 725 cubic centimeters, which makes it larger than the brain of *H. habilis*. As *Homo erectus* replaced *H. habilis*, there is an improvement in mobility and toolkits. *H. erectus* migrated from Africa to Europe and Asia with the knowledge of tool-making. The spread suggests why similar stone tools have been found in most of the archaeological sites all over the world. However, the Acheulian tools of Africa and Europe are not found in India and eastward but the Java fossil discovered in Asia was *H. erectus*. Based on the differences between the *H. erectus* found in Africa and those in Asia, Bernard Wood suggested that African *H. erectus* should be identified as *H. ergaster*. Some archaeologists argue that there were two species of early *Homo (habilis and rudolfensis)* while others contend that there was only one species. Some researchers also argue that *H. rudolfensis* was contemporary with habilis, while others say that *H. ergaster* rather than *erectus* was the successor.

A new species is designated as archaic *H. sapiens* ("the wise or thinking human"). The term archaic *H. sapiens* is used to distinguish them because they exhibited a mosaic of *H. erectus* and *H. sapiens* characteristics. They may be distinguished as early as 400,000 years ago and modern *Homo sapiens* emerged between 100,000 and 200,000 years ago in Africa. Archaic *Homo sapiens*, also labeled *H. rhodesiensis* ("Rhodesian Man"), corresponded to the *Homo neanderthalensis* in Europe. Both of them possessed heavier bones, larger nose, bigger brain, and superior tools than *H. erectus*. Furthermore, there were changes in their teeth toward modern humans. The Neanderthal people lived in cold areas thus their location mostly in Europe and the Middle East. Archaic *Homo sapiens* were found at Kabwe in Zambia and some parts of South Africa and the dominant invention was the Levallois method of forging specialized tools such as flaked-stone tools.

The Bodo skull was found in Ethiopia in 1971 with a span of 200,000 to 700,000 years ago. That was the same period Richard Leakey and his team discovered a complete skeleton of *Homo erectus* at Kookri Fera in Kenya. The Bodo skull was more advanced than *H. erectus* in spite of their similar features. It had nasal opening, substantially large brain, and humanlike face. Another specimen appeared about 35,000 to 40,000 years ago. It was the Ndatu skull from Tanzania. Its face was smaller than that of the Bodo skull and its brain was larger than that of *H. erectus*.

Anatomically modern human beings, known as *Homo sapiens sapiens*, appeared in Africa about 200,000 years ago. Sally McBreartey suggested that "African archaic *Homo sapiens* populations probably gave rise to the first modern humans, *Homo sapiens sapiens*." Archaeologists have found fossilized remains of *Homo sapiens sapiens* from the Klassies River Mouth in Ethiopia and South Africa. They survived during the Middle Pleistocene period. Paleoanthropologists, however, debate the origins of the *Homo sapiens sapiens*. There are three hypotheses. The first proposes that *H. sapiens sapiens* originated from...
Africa, migrated to, and completely replaced the populations in Europe and Asia. The second believes in partial replacement, and the third proposes multiregional evolution. Homo sapiens sapiens manufactured complicated tools and weapons of wood, stone, and metal. They made handles for tools, ornaments for their bodies, and lived in larger and complex communities. Adaptation to ecological and climatic dictates also led to differences and improvement in toolkits.

In 1978, Mary Leakey discovered the fossilized footprints of hominids at Laetoli. The three sets of hominid footprints formed a trail more than 75-80 feet long. They were found in a layer of volcanic tuff in sediments dated between 3,59 and 3,77 million years ago. Mary Leakey was convinced that the footprints existed about half a million years before the fossils that Johanson had unearthed in the Afar region of Ethiopia in 1973. Archaeologists have found more footprints to prove that bipedal locomotion was an important characteristic of early hominids. Aside from the footprints, Louis and Mary Leakey discovered thousands of stone tools made, used, and left behind by the early people at the Olduvai Gorge in Tanzania.

Archaeology has facilitated the study of the early human beings not only in Africa but also in other parts of the world. As Richard Leakey put it, "Archaeologists have assembled a wealth of data on early human technology in Africa that tells us a great deal about the appearance of man." With all the archaeological evidence at our disposal, it is possible to trace the technology of the early humans.

The Stone Age

Tool-making activities dominated the early stages of human history. It was one of the hallmarks of human development in technology, especially in Africa. Foraging for food by human beings as well as animals such as chimpanzees led to the manufacturing of tools. Stone tools were associated with Homo habilis. The Stone Age is used to designate the period when stones were important in the development of human technology. The Stone Age has been divided into three: Paleolithic (Old Stone), Mesolithic (Middle Stone), and Neolithic (New Stone). In studying these periods, some problems have emerged. First, there is the difficulty in presenting the events of the ancient times in a neat chronological sequence. Second, there is no uniform development of technology and civilizations of the world.

The emergence of tool technology took place during the Paleolithic (Old Stone) Age. The Paleolithic period covered much of the world, beginning from Africa. The period has been sub-divided into three—the Upper, Middle, and Lower Paleolithic. The three have been defined by the invention of new techniques of stone tools. During the Upper Paleolithic, the technique for manufactur-

The Oldowan Culture

In 1959, the Leakeys recovered some tools from the Olduvai Gorge. They were believed to be the oldest tools made by either H. habilis or H. rudolphiensis. They called the finds the Oldowan Culture. According to Louis Leakey, the Oldowan culture is the oldest well-authenticated stone-age culture that has yet been discovered in the world. He emphasized the making of tools because "it was this step which lifted 'near-man' from the purely animal level to that of human status." The period was characterized by bifacial flaking technology. Some of the Oldowan stone tools such as the choppers, scrapers, chisels, cleavers, hammer stones, and flakes were simple and did not perform specialized functions. All of

them showed the variety of tool manufacturing as well as the different purposes for which they were used. Oldowan tools date to between 2.4 and 2.6 million years ago. Other Oldowan sites include Ethiopia, Kenya, Angola, and Sterkfontein and Swartkrans in South Africa.27

The Acheulian Culture

The Acheulian technology succeeded the Oldowan industry in Africa. Remarkable transformations in manufacturing standardized tools such as hand axes and cleavers characterized the period. Chipping was finer, handles were improved upon, and smaller and handier tools were produced through the use of the Levallois technique. First identified in France, the Levallois method was used to detach flakes to produce blades.

The Acheulian culture belonged to the Lower Paleolithic Age and extended to the Middle Paleolithic. The most prominent tool of the Acheulian technology were the bifacial cutting tools known as hand-axes, which were first identified in France at the site of St. Acheul but as indicated by Louis Leakey, the earliest ones came from the Olduvai Gorge.29 Hand-axe was a multi-purpose implement because it was used for piercing, cutting, and scraping. Its invention was indeed a revolution in technology. While the Oldowan was found only in Africa, the Acheulian culture was not limited to any particular group of people. It was found in Africa, Western Europe, and the Middle East but very rare in eastern Asia.

The sites of the Acheulian culture in Africa were more widely distributed than the Oldowan. Clifford Jolly and Randall White contend that “the Acheulians were the first humans to expand out of Africa, having done so about a million years ago.”30 This accounts for the widespread distribution of Homo erectus and their technology all over the world. Archaic Homo sapiens had emerged by the time the Acheulian culture came to an end and replaced by more sophisticated industrial equipment such as core-axes, choppers, and core-scrapers.31

The Middle Stone Age

The Middle Stone Age replaced the Acheulian, although the nature of transition is not clear. In North Africa and the Sahara, this period is known as the Middle Paleolithic and it began between 100,000 and 200,000 years ago and lasted until 40,000 and 20,000 years ago.31 There was considerable improvement in the manufacturing of flake tools such as knives, spears, and daggers. Flint became a very useful material for tool making. Because of the complexity of tool making during this time, Augustin Holl suggests that the Middle Stone Age should be regarded as a techno-complex period.32 Sites of the Middle Stone Age such as the Nok were found in West Africa. Others were Kromdraai, Swartkrans, Hopfield, and Langebaanweg in southern Africa. The Nok culture in the Jos plateau of Nigeria was classified as belonging to the Middle Stone Age. The Middle Stone Age culture is called Sangoan in Equatorial and West Africa. Unlike the Acheulian population, the Middle Stone Age people scattered into the interior, rather than clustering around water areas. The Middle Stone Age people in Africa were contemporaries with the Neanderthal population in Europe.

The Late Stone Age

The Late Stone Age is characterized by the making of small stone tools called “microliths,” which were used as composite implements. They were neatly trimmed and slotted into arrow shafts to form points and barbs. The use of the new stone technology was widespread. It improved the hunting technology and

the economy, especially in hunting and fishing. 33 Microliths were made about 35,000 years ago at various sites such as the Olduvai Gorge, Mumba-Hohle in northern Tanzania, and Matupi Cave in Zaire. 34 In West Africa, microlithic centers have been found at Iwo Eleru, Mejirio Cave, and the rock-shelters at Rep in Nigeria, the Bosumpa Cave in Ghana, the Shum Laka in Cameroon, and Kouroungkorokélé in Mali. 35 Other stone tools of the Late Stone Age included knives, scrapers, anvils, grinding stones, hammer stones, and saws. The bone tools discovered in the Katanda region of Zaire, compare with the European Upper Paleolithic technology. 36

Iron Age

The development of food-production in contrast to foraging called for the use of metal-based implements. Metals such as copper, bronze, and iron were used. Africa did not experience the Copper or Bronze Age. However, there was a large deposit of copper at Akoujou in Mauritania, central Mali, Niger, Angola, and Central African Copperbelt in South Africa. Copper was used mainly for decorative objects such as bracelets and it was later associated with political power. It also became an important article of trade in the indigenous commercial networks. 37 Bronze was used in northern Africa, especially along the Mediterranean. 38 Thurstan Shaw suggests that Africa jumped from the Stone to the Iron Age because the desiccation of the Sahara broke the connection between Egypt and sub-Saharan Africa and "the link was not re-established until... some three thousand years later." 39

During the Iron Age, which spread between 500 B.C. and A.D. 500, iron-based equipment such as axes, hoes, knives, arrows, spears, and razors were produced thereby transforming the economic system and culture of the early people. As agricultural communities increased, it became necessary to produce powerful, durable, and handy implements, which were used to clear rough and rugged lands.

Indigenous iron working in Africa involved two activities: smelting and smithing. The procedure for iron smelting is complex. There is an argument that the smelting of iron was introduced to Africa from Anatolia (modern Turkey) from about 1500 B.C. 40 A contrary argument is that iron smelting was an independent development in Africa because iron ore was plentiful and various types of ore were exploited. The Nok civilization, which flourished in 500 B.C. in central

33 Shaw, "The Prehistory," 622.
35 The Late Stone Age is divided into three periods—the Upper, Middle, and Lower Stone Age. Several sites of the three periods are mentioned by Holl, "Western Africa," 305-312 and Shaw, "The Prehistory," 624.
36 Furmain, Essentials of Physical Anthropology, 343-344.
38 Kevin Shillington, History of Africa (New York, St. Martin's Press, 1995), 37.
40 Shillington, History of Africa, 39.

41 C.T. Shaw, "The Prehistory of West Africa," in Ki-Zerbo, Methodology and African Prehistory, 628-629.
Age populations made the rapid spread of iron technology possible in West Africa.

Another site of independent development of iron smelting was the kingdom of Kush. Meroe was both the political headquarters and the industrial center of Kush. Meroe played an important role in the diffusion of iron working in Africa.

Archaeological excavations indicate that metallurgical technology developed in Axum where iron and bronze artifacts have been recovered. In Egypt, the role of iron in agriculture and commerce became important during the period of the Saites kings (663-525 B.C.). Iron was mined and smelted in Ethiopia and there were communities that used iron in the region around the Great Lakes. A recent survey by Pierre de Maret and G. Thiery indicates that the first appearance of iron in Central Africa was among villagers and it diffused slowly among other groups. They also indicate that agricultural populations in modern Rwanda, Burundi, and the Kivu region of Zaire (Democratic Republic of Congo) emerged as productive iron-smelters. It is, however, difficult to arrive at a specific date of the spread of iron technology in Africa because a spectrum of dates has been suggested.

In East Africa, Roland Oliver used pottery types and patterns to trace the spread of iron by the Bantu-speaking people. Their farming and pottery occupations required the use of iron thus, the technology was spread in the course of their migration. Oliver associated the growth and diffusion of pottery in Rwanda, Burundi, Kivu, Uganda, and western Kenya with the Early Iron Age.

A recent linguistic study of loan words in Bantu reveals that the early Bantu people borrowed iron working from Central Sudanic speakers. Archaeological excavations by Peter Schmidt on the western shore of Lake Victoria have recovered some furnace pits. He argued that the Buhaya, a Bantu-speaking agricultural people inhabiting the Kagera region of Lake Victoria, are one of the groups of people with a living iron working tradition in Africa. They practiced iron smelting in 200-600 B.C., the same period when iron technology flourished in the Nok culture.

The use of iron brought about significant changes in technology and the economic system of African peoples, whether it was introduced or it developed independently. It strengthened and facilitated the practice of agriculture and commerce. Iron smelters and blacksmiths produced hoes, knives, and diggers, which were used for farming, arrowheads, spears, and swords, which were weapons used especially against wild animals. Thus, iron was used for tools and weapons. The possession of iron materials was a status symbol, particularly among blacksmiths and rulers. Broadly, iron performed socio-political and economic functions.

Agriculture and Pastoralism

Towards the end of the Late Stone Age, there was a gradual transition from hunting and gathering to a production economy with the practice of agriculture and pastoralism. Improved metallurgy with the adoption of iron implements and
microlithic technologies played a major role in the transition. Along with farming arose permanent settlements and large communities. Settlements were located around fertile areas and rivers such as the Nile, Niger, Gambia, Senegal, Congo, and Zambezi. Lake Chad in West Africa and the Great Lakes in Central Africa accommodated agricultural communities. Societies began to adapt to varied environments that permitted food production and diversification of the economy. As a result of increased population, more food was produced.

Egypt, West Africa, and the Ethiopian highlands were cores of agricultural development. In these places, most of the food crops were cereals and vegetables such as wheat, sorghum, barley, miler, melons, beans, African rice (Oryza glaberrima), Tef, and fonio. Root crops such as African yams were also cultivated. In West Africa, cowpeas and black beniseed were grown and vegetable oils were obtained from oil-palm and shea butter trees. Graham Connah suggests that agricultural systems began in West Africa in the first millennium A.D. when rotational bush-fallow cultivation was adopted. Some of these crops were also found in the Nile valley, especially in Kharroum where microlithic tools and polished axes were used.

While the domestication of plants was an indigenous development in Africa, animal domestication, especially sheep and goats, was a result of influences from South-West Asia. J. E. G. Sutton contends that the raising of sheep, followed by goats and cattle developed among East African peoples between the third and the second millennium. The Tuareg of the Sahara, the Fulani of West Africa, and the Maasai of East Africa are nomadic people with great skills in domesticating animals such as sheep, horses, donkeys, goats, and cattle. Some Bantu groups, according to A.L. Mabogunj, combined animal husbandry with plant cultivation to the mutual advantage of both, and in Rwanda there was a symbiotic economic relationship where the Tutsi kept cattle and the Huru practiced agriculture.

Archaeological evidence suggests that irrigation systems were adopted in pharaonic Egypt and the middle Nile to support agriculture and to protect people's shelter. Dike-building, canal-digging, and artificial dams were some of the techniques employed to check the annual inundation of the land. It is to be noted that "floods may be either too great—destroying everything in their passage—or too slight—failing to provide adequate irrigation." In Upper Nubia, particularly on the Kerma plateau, vestiges of irrigation works have been found. The mechanisms used were the shaduf, which were later replaced by the sapry. A. A. Hakem stated that the introduction of sapry had a significant impact on agriculture, especially in Dongola because it saved more time and labor than the shaduf. In most of the areas that experienced annual flooding, grains and cereals such as barley, wheat, peas, maize, and beans were cultivated. Cucumbers, lentils, and melons were also planted. Soil conservation was practiced through intercrop-

51. Ibid, 4.

ping and crop rotation. Irrigation system was also practiced in southern Ethiopia, northern Tanzania, and Kenya.

Crafts such as pottery and wood-carving supplemented agriculture and animal husbandry. Archaeological excavations along the coast of West Africa suggest that a complex structure of ironworking, wood-carving, and pottery was developed during the first millennium B.C. when foragers began to interact with farmers. The emergence of pottery was another innovation in technology among the ancient societies of Africa. Two pottery industries at Punpun and Kintampo in Ghana had developed by 1400 B.C. Both sites show evidence of intermingling of material culture between the Saharan and forest people. Apart from pottery and rich deposits of iron ore that facilitated iron smelting and food production, there is evidence of domestication of animals at Kintampo by the Akans. However, the Bantu-speaking people were said to be responsible for the spread of ironworking and pottery in Sub-Saharan Africa during their migrations. The Eastern stream of the Bantu spread the Urewe and Kwaile styles of pottery designs.

In tracing the origins of humans and the development of technology, archaeology has provided tremendous information. Prehistoric societies of Africa interacted, borrowed ideas, and evolved agricultural, economic, and social patterns, which became significant aspects of human transition to historic times. Through archaeological studies, it is possible to identify similarities in agricultural tools and crops that existed from one region to another.

African Interpretation of Human Origins

Oral traditions in Africa are numerous and widely diverse in contents. They provide limited information, especially when dealing with the remote past. Much of what is contained in the traditions is associated with religious beliefs and practices. Writing on the spirituality of African peoples, Peter Paris contends: "undoubtedly, African societies on the continent have produced extremely complex cosmologies in their many and varied attempts to explain and relate the three realms of reality: spirit, history, and nature." The African philosophy of life is separate and distinct from the Western perspective. Like other cultures of the world, African societies deal with the issue of how humans came into existence. To this end, they narrate traditions that support creation and they place human beings as central figures among all other creatures. A major problem that arises from the traditions of origins is their historical validity and acceptability. Historians deal with facts that have rational interpretation, which African traditions of origins do not provide. The concept of creation is a universal phenomenon. In his Myths of the World, Michael Jordan asserts that

57. Connah, African Civilizations, 130, 140.
every society, "has developed notions of creation process, often highly elaborate ones." As for Africans, they believed that the Supreme Being is responsible for the creation of humans and other creatures although they lack unanimity in describing the order in which the world came into existence. A few examples will be used to illustrate African concept of creation.

In modern Ghana, the Asante people describe the creator of the world as Borebore—the Excavator, Originator, Hewer, or Carver.61 The most used name, however, is Onyame or Nyankpon (the Great Supreme Being). He is an unseen architect who designed the whole universe including its people and their destiny. They assert that human beings were created before animals. The Mende in Sierra Leone talk of Ngewo ("Sky god") as the creator of the world. Ngewo was formerly living close to humans but he moved into the sky. Among the Ewe and Fon, the creator is known as Nana-Buluku.

The Edo in southern Nigeria refer to the creator as Osanobua—immortal, creator of all things; giver of life, all powerful, and ruling everything.62 Like the Ashanti, the Edo believed that humans were created before animals. The Igbo in eastern Nigeria do not have legends that relate to creation. Instead, they emphasize migration tradition from Egypt.63 However, they refer to God variously as Chineke (“the deity that creates”) or Chukwu (“Great Being”). They also speak of Chineke or Chukwu as Olisabululuwa (“the one who fashions the world”).64 Chukwu is well respected, adored, and feared but he is not worshiped.

The Yoruba in southwestern Nigeria refer to the source, origin, or beginning of life as oritu or orisun. According to one variant of the tradition, the earth was merely a watery, marshy waste and divinities (possibly human beings) used to descend from heaven through spider's web to hunt on the vast expanse of water. To create solid earth, Olodumare (“the Creator”) gave a handful of sand, a pigeon, and sixteen palm kernels to Orisunla. Getting to a certain spot on the water, Orisunla let loose the pigeon who thereafter spread the sand to create dry land. The palm kernels explain how trees came into being. The spot on which this happened is called Ile-Ife (“that which is wide”).

Another variant of the tradition credits the creation of dry land and all kinds of living creatures to Obatala, a spirit. Obatala began his journey from heaven with a snail's shell filled with sand, a white hen, a black cat, five pieces of iron, and a palm nut. Equipped with these materials, Obatala descended to earth through a gold chain. During the journey, Obatala became drunk and Odudua seized the instruments of authority. Odudua eventually led the delegation to the world and he landed on a hill called Oke-Oramfe in Ile-Ife. The hen spread the sand and farmland appeared.65

Yoruba historians weave both traditions together to suggest a pre-existing society before the arrival of Odudua. At his arrival, Odudua established a new dynasty. Orisa-ala was also commissioned to create birds, animals, and humans but Olodumare reserved the prerogative of depositing the essence of life into all living beings.66

The creation tradition in Burundi states that Imana created man and named him Kihanga. After taking a decision to create the earth, Mmana sent Kihanga from the sky “on the end of a silken rope.” Among the Dogon people of the Mali Republic, the creator Amma formed human beings out of clay. The Dogon offer regular worship to Amma.67 The Zulu, Abaluyia, Lozi, and Lugbara traditions explain how humans and cattle originated from the same spot but not from the same heritage. It states that cattle were meant to provide food, meat, and milk for man. John Mbiti mentions that the Akamba believed that human beings, cattle, sheep, and goats were lowered from the sky.68 The Maasai, Nuer, Dinka, and Nandi in East Africa, like the Fulani in West Africa, have a special attachment to cattle because they provide economic resources.

The central philosophy is that creation was carried out by a superior unseen power that created a fundamentally moral universe. None of the traditions has explanation for the systematic process of evolution and tool making that is provided in archaeology. To scientists and archaeologists, these traditions do not provide adequate explanations for the origins of the early people. This prompted Louis Leakey to suggest that “the story of the Creation must be replaced by something that was in accordance with our general knowledge about evolution of all forms of life.”69

Conclusion

It has been proven in this chapter that the evidence about the genesis of humans from archaeology is overwhelming. Its scientific approach and universal acceptability is not in doubt. Numerous artifacts that have been recovered indicate how early people developed and advanced in technology, agriculture, and social relations. That notwithstanding, Africans are entitled to their own interpretations, opinions, and belief systems, especially on creation as against evolution. Even in the Western world, some people reject the theory of evolution. In this

70. Jordan, Myths, 49. In the Yoruba tradition, the creator divinity (Odudua) supposedly descended from heaven through a mystical chain.
72. Mbiti, African Religions, 50.
73. Leakey, The Progress and Evolution, 2.
chaprer, both views have been presented. While traditions rationalize the origins of humans in terms of creation, scientific interpretations emphasize the theory of evolution. The objective was not to resolve the opposing views but to represent African interpretation. Instead of engaging in a reconciliation of the two conflicting approaches (an attempt which might end up merely in the formulation of unresolvable theories), a worthwhile exercise is to concentrate on what early human beings have bequeathed on modern societies. Obviously, scientific evidence does not fit with a religious view in which God and the ancestors are the ultimate powers in a cyclical, ahistoric universe. African philosophy of life may differ in certain ways from other people's or stands in contradistinction with scientific explanation, nevertheless, it is imperative to acknowledge and respect the belief systems in order that their history and culture would become meaningful. While traditions of origins are universal, archaeological interpretation is a more widely recognized and accepted approach to the study of the prehistory of Africa.

Review Questions

1. What historical values can we derive from African traditions of origins?
2. What similarities or differences exist in African traditions of origins from myths of other places?
3. How has the theory of evolution helped in tracing the origins of man?
4. Discuss the importance of agricultural revolution in the early history of Africa.
5. What is the main proof of the existence of man in Africa?
6. Discuss the contributions of the following to the study of evolution:
 a) Charles Darwin
 b) Raymond Dart
 c) Louis and Mary Leakey
 d) Donald Johanson

Additional Reading

Chapter 4

Civilizations of the Upper Nile and North Africa

Funso Afolayan

This chapter examines the development of early civilizations in the regions of the Upper Nile and North Africa. It looks at the rise, historical formation, structures, politics, culture, trade, religion, achievements, external relations, and fall of the ancient civilizations of Egypt, Kush, Aksum, and Carthage. The advent and the consequences of Greco-Roman domination and of Christianity in North Africa before the rise of Islam are also examined.

Ancient Egypt: Foundations and Historical Development

The Neolithic Revolution

Environmental factors set the stage for the emergence of the civilization of ancient Egypt. The story began in the area known as the Fertile Crescent, covering the region stretching from Mesopotamia, through Palestine to Upper Egypt. It was in this region, about twelve thousand years ago, towards the end of the Late Stone Age period, that the genus homo sapiens sapiens, or man the hunter and food gatherer, became a farmer and domesticator of animals. This was the Neolithic Revolution, an agricultural transformation that had momentous consequences for subsequent human history. Farming and pastoralism ensured more regular and more predictable food production, resulting in larger surpluses. With food supply assured, man the wanderer became man the settler. Increased food production and more varied diet led to population expansion. Surplus food production freed segments of the population to engage and specialize in non-material pursuits such as art, music, and politics. The result of all these developments was the emergence of permanent settlements, the growth of trade, and the establishment of more elaborate socio-political organizations. Available evidence shows that by 10,000 B.C. the inhabitants of Nubia and Lower Egypt were already beginning to experiment with the planting of wild barley and other crops. By 6,000 B.C., millet and sorghum, two cereals of African origin, were being harvested in the Nile Valley.