Homework 1 PS 204 Winter 2019

1. Say \(R \) is a preference relation defined on a set \(X \). We say that \(xPy \) if \(xRy \) and not \(yRx \); in other words, if \(xPy \), the person strongly prefers \(x \) over \(y \). We say that \(xIy \) if \(xRy \) and \(yRx \); in other words, if \(xIy \), the person is indifferent between \(x \) and \(y \).

a. Say \(x, y, z \in X \). Say that \(R \) is transitive. Say that \(xPy \) and \(yIz \). Show that \(xPz \).

b. Show that if \(R \) is transitive, then \(I \) is transitive.

c. Show that if \(R \) is transitive, then \(P \) is transitive.

2. Say that \(R \) is a preference relation defined on \(X \) and that \(R \) is complete and transitive. Show that \(P \) is “negatively transitive,” in other words, for all \(x, y \in X \), if \(xPy \), then for any \(z \in X \), either \(xPz \) or \(zPy \) or both.

3. Let \(X = \mathbb{R} \times \mathbb{R} \); in other words \(X \) is all ordered pairs of real numbers. Define the preference relation \(R \) on \(X \), where \((a, b)R(c, d)\) if either (1) \(a > c \) or (2) \(a = c \) and \(b \geq d \). For example, we have \((4, 2)R(3, 9)\) and we also have \((4, 2)R(4, 1)\). This preference relation is sometimes called a “lexicographic” preference because it is like alphabetizing words in the dictionary: order words according to the first letter, but if two words have the same first letter, order them according to the second letter.

a. Show that \(R \) is complete.

b. Show that \(R \) is transitive.

4. Let \(N = \{1, 2, 3, \ldots\} \) be the set of all natural numbers and let \(X = N \times N \). In other words, \(X \) is the set of ordered pairs \{(1, 1), (1, 2), (1, 3), \ldots, (2, 1), (2, 2), (2, 3) \ldots\}. We define the preference relation \(R \) on \(X \), where \((a, b)R(c, d)\) if \(\max \{a, b\} \geq \min \{c, d\} \). In other words, \((a, b)R(c, d)\) if the maximum of \(a \) and \(b \) is greater than the minimum of \(c \) and \(d \). For example, \((2, 5)R(100, 3)\).

a. Can you define a utility function \(u \) on \(X \) which represents the preference relation \(R \)? If so, find a utility function. If not, explain why not.

b. Now let \(X = \{(1, 1), (2, 2), (3, 3), \ldots\} \). Can you define a utility function \(u \) on \(X \) which represents the preference relation \(R \)? If so, find a utility function. If not, explain why not.
5. Let $X = \mathbb{R} \times \mathbb{R}$. We define the preference relation R on X, where $(a, b)R(c, d)$ if $a \geq c$ or $b \geq d$.

a. Can you define a utility function u on X which represents the preference relation R? If so, find a utility function. If not, explain why not.

b. Now let $X = \{(1, 5), (2, 5), (3, 5), (4, 5), \ldots\}$. Can you define a utility function u on X which represents the preference relation R? If so, find a utility function. If not, explain why not.

c. Now let $X = \{(7, 6), (1, 5), (2, 5), (3, 5), (4, 5), \ldots\}$. Can you define a utility function u on X which represents the preference relation R? If so, find a utility function. If not, explain why not.

6. We say \mathbb{R}^+ is the set of nonnegative real numbers, in other words any $x \in \mathbb{R}$ such that $x \geq 0$. Let $X = \mathbb{R}^+ \times \mathbb{R}^+$. In other words, X is the set of ordered pairs (x, y), where $x \geq 0$ and $y \geq 0$. Say that a person likes both coffee and donuts, but because he is very superstitious, he really dislikes getting both 13 cups of coffee and 13 donuts. So we define the preference relation R on X, where $(a, b)R(c, d)$ if $a + b \geq c + d$ or $(c, d) = (13, 13)$.

a. Can you define a utility function u on X which represents the preference relation R? If so, find a utility function. If not, explain why not.