Our running example for this worksheet is the ever-exciting sample space given by the set of outcomes for two coin flips. That is

\[S = \{HH, HT, TH, TT\} \]

1. Set membership (applies to an element).
 (a) \(\in \) “is an element of.” E.g. \(HH \in S \) “\(HH \) is an element of \(S \).”
 (b) \(\notin \) “is not an element of” E.g. \(HHH \notin S \) “\(HHH \) is not an element of \(S \).”

2. Set relationships (applies to a set).
 (a) \(= \) Set equality. Two sets, \(S \) and \(S' \), are equal if every element of \(S \) is an element of \(S' \) and vice versa.
 (b) \(\subset \) “is contained in” or “is a subset of”

\[\{HT, TH\} \subset S \]

Note the distinction between subset and element \(\{HH\} \subset S \) but \(HH \notin S \)
 (c) \(\supset \) ‘contains’ or ‘is a superset of’

\[\{HH, TH, HT\} \supset \{HT, TH\} \]

3. Null set or empty set, \(\emptyset \). Set with no elements.

4. Logical operations
 (a) \(A \cup B \). Union: The union of set \(A \) and set \(B \) is the set of elements in either \(A \) or \(B \).

\[\{HH, HT, TH\} \cup \{TH, HT, TT\} = S \]

Extended union:

\[\bigcup_{i=1}^{n} X_i = X_1 \cup X_2 \cup \ldots \cup X_n \]

1In some contexts, distinctions are drawn between weak and strong versions of these relationship operators. E.g. “\(A \subset B \)” would be read as “\(A \) is a proper subset of \(B \),” or “\(A \) is strictly contained in \(B \)” implying that there is at least one member of \(B \) that is not in \(A \). This could then be distinguished from “\(A \subseteq B \)” or “\(A \) is weakly contained in \(B \),” which remains true even when \(A \) and \(B \) are equal. Most probability books use only the simpler symbol \(\subset \) to denote the more general relationship that remains true when \(A \) and \(B \) are equal.
(b) \(A \cap B \). Intersection: The intersection of \(A \) and \(B \) is the set of elements contained in both \(A \) and \(B \). (note: Some books, Ross in particular, denote \(A \cap B \) as \(AB \))

\[\{HH, HT, TH\} \cap \{TH, HT, TT\} = \{HT, TH\} \]

Extended intersection:

\[\bigcap_{i=1}^{n} X_i = X_1 \cap X_2 \cap \ldots \cap X_n \]

(c) Complement. \(\sim \) or \(A^c \): The complement of set \(A \) is everything in the universal set \(S \) (the sample space, in our context) that is not in \(A \).

\[\sim \{HH, HT, TT\} = \{TH\} \]

Note:

\[\sim A \cup A = S \]
[\[\sim A \cap A = \emptyset \]

5. Algebraic rules

(a) Commutative Laws

\[A \cup B = B \cup A \text{ and } A \cap B = B \cap A \]

(b) Associative Laws

\[(A \cup B) \cup C = A \cup (B \cup C) \]
\[(A \cap B) \cap C = A \cap (B \cap C) \]

(c) Distributive Laws

\[(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \]
\[(A \cap B) \cup C = (A \cup C) \cap (B \cup C) \]

(d) Demorgan's Laws

\[\sim (A \cup B) = \sim A \cap \sim B \]
\[\sim (A \cap B) = \sim A \cup \sim B \]

6. Additional terms and ideas

(a) Mutually exclusive sets

They have an empty intersection. If \(A_i \cap A_j = \emptyset \), for all \(i, j \), then \(\{A_1, A_2, \ldots, A_n\} \) are mutually exclusive.

(b) Partition

A partition divides a set into a set of mutually exclusive and exhaustive subsets.

If \(A_i \cap A_j = \emptyset \), for all \(i, j \) and \(\bigcup_{i=1}^{n} A_i = B \), then \(\{A_1, A_2, \ldots, A_n\} \) are a partition of \(B \).

(c) A 'divide and conquer' rule for sets.

Any set can be broken down into the part of it that intersects with another set and the part that does not. That is,

\[A = (A \cap B) \cup (A \cap \sim B) \]